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In this paper, we introduce a novel local community detection algorithm based on the

random walk probability distribution. After selecting an initial node, the proposed

algorithm adds a group of nodes to the community of initial node based on normalized

random walk probability distribution. Then it examines the explored community

to decide on termination of the algorithm. Finally, it utilizes a global community

detection algorithm to remove the irrelevant nodes from the explored community.

Empirical results on artificial graphs and datasets from real networks showed that the

proposed algorithm returns well-structured communities and is capable of escaping

from local extremums.
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Lead Paragraph:

In recent years, there has been a tremendous amount of effort towards introduc-

ing community detection algorithms, many of which are based on the assump-

tion of having a full-knowledge of the network topology. However, most complex

networks are extremely large and accessing their global information is often in-

feasible. Hence, local community detection algorithms have been introduced

to alleviate this problem. In this approach, the community of a given node is

found by using its local information. In each iteration, local algorithms explore

a small part of a graph to gather information of the neighboring nodes. Then,

the best node among the explored nodes is selected and added to the community

of the given initial node. Because of partial knowledge about the topology of

network, previously proposed algorithms usually trap in a local extremum, and

hence cannot explore all nodes in the community of initial nodes. In this paper,

we propose a novel algorithm that can escape from local extremums by adding

a group of nodes, instead of choosing a single node in each iteration. In order

to evaluate the proposed method, extensive simulations are conducted on arti-

ficial graphs and real network datasets. Moreover, results are compared with

the communities found by OSLOM1 which is a well-known community detection

algorithm.

I. INTRODUCTION

The fast growth of complex networks and their wide range of applications have made

the analysis of these networks a prevalent research area. The growth of interest in complex

networks analysis and investigating their structural features have led to studies towards

community detection in such networks. In contrast to random networks, in many complex

networks, appearance of links is not random. Based on this fact, complex networks have a

modular structure where each module is called a community. A community, is a group of

nodes which are connected to each other densely, while their connection to other nodes is

sparse2. There are two criteria of concern to define a community structure in a graph:

1. Global Criterion: This criterion evaluates all communities of a graph by considering
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the dependency amongst them. A common global criterion is modularity that specifies

the difference between a network with its determined community structure and a

random graph3,4.

2. Local Criterion: In this criterion, each community is considered as an independent

entity and is evaluated by ignoring the rest of the graph2. Local Modularity(R)5, and

Conductance(φ)6 are commonly being used as local criteria.

Based on the information used for community detection, there are two main approaches for

finding communities. In the first approach, all communities of a graph are detected with the

aim of maximizing (minimizing) a global criterion, which needs comprehensive information

about the graph7–9. These methods are called global community detection algorithms. The

complexity of these methods is high and applying them to large networks is impractical. In

addition, fast growth of social networks makes access to the whole topology information of

these networks infeasible. Moreover, in some applications we are only interested in com-

munities of a special set of nodes and acquiring information about all communities is not

desirable. To alleviate some of these problems, many local community detection algorithms

have been proposed. In this type of approaches, a community for a given node(s) is found by

expanding this node, and the goal is to maximize (minimize) a local criterion5,10–15. These

algorithms have two main steps and an optional step in each iteration:

1. Node selection step: In this step, local algorithms select the most appropriate node

by utilizing a criterion and add it to the community of the initial node.

2. Decision step: In this step, a criterion is used to determine when to stop adding

nodes to a community.

3. Filtering step: Some local algorithms check the detected community to eliminate the

inappropriate nodes. This step is optional and many local algorithms do not employ

this step.

The previous local community detection algorithms usually trap in local extremums. As a

consequence, local algorithms tend to terminate sooner than expected, and fail to extract

all the nodes that belong to the community of the initial node. To address this problem, we

introduce a novel algorithm that adds nodes to the community in a different manner.

3



The rest of this paper is organized as follows. In section II, we introduce the previous

works and describe their drawbacks. In section III, we explain the random walk probability

distribution. In section IV, we present an efficient algorithm to find a community for a

given node. There are two approaches to evaluate local algorithms. We describe these

approaches in section V. The experimental results and comparisons with the previous works

are provided in section VI. Finally, the concluding remarks are presented in section VII.

II. RELATED WORK

Each network can be represented by a graph G = (V,E) where V is the set of vertices,

and E is the set of edges. Nodes in a network are vertices of the graph (for example a

web page in WWW), and links between nodes are the edges of the graph. We assume

that graphs are undirected and unweighted. As discussed earlier, local community detection

methods have been introduced to find communities for a given set of nodes. They start from

an initial node, and select the most appropriate nodes (specified by a criterion) from its

neighbors as the members of the corresponding community, called C. After specifying the

most appropriate node, these algorithms decide whether to add that node to the community

or not. If the aforementioned node is added, then a node from the neighbors of the nodes

in C is selected in a similar way, and this process is continued until a termination criterion

is met.

Each main step of local algorithms uses a criterion. In the following, we review the criteria

used in the two primary steps and their shortcomings.

A. Node selection step

Local community detection algorithms start by iteratively adding nodes to an initial

community C which is an empty set. In each iteration, the algorithm looks for the most

appropriate node among the neighbors of C, called N , which is defined as:

N = {x ∈ V |(x, y) ∈ E, y ∈ C, x /∈ C} (1)

There are two main approaches for selecting the best node and adding it to the community

C:
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1. Per community evaluation: In this approach, a local community criterion is used

to choose the most appropriate node, and the node that improves this criterion more

than the others, is selected. For instance, by applying a local criterion such as Local

Modularity (R), a node with the highest amount of improvement in R is selected.

2. Per node evaluation: In this approach, a criterion that is based on the number of

indegree and outdegree edges of each node, is used. Edges of each node are categorized

into two classes: indegree and outdegree edges. An indegree edge ends into a node in

C while an outdegree edge ends into a node that is not in C. These criteria assign

weights to the indegree and outdegree edges of each node in different manners. At

last, a node with the highest(lowest) total weight is selected. Some of the well known

criteria in this category are investigated in the following.

• Outwardness11: This measure assigns a weight to indegree and outdegree edges

of a candidate node that is proportional to the degree of that node. Each indegree

edge of node v has the weight −1
kv

, and each outdegree edge has the weight 1
kv

,

where kv is the degree of node v. Therefore, the competency of node v is computed

as:

Ωv =
(koutv − kinv )

kv
(2)

In which, koutv and kinv are the number of outdegree and indegree edges of node v,

respectively.

kv = koutv + kinv (3)

Finally, a node with the smallest outwardness is selected and added to the com-

munity. It is important to note that this criterion does not distinguish between

outdegree edges pointing to the nodes in N , and the unknown nodes (U).

• MaxActivation16,17: This measure allocates an activation value to the initial

node. In each step, this value propagates through the nodes in (C ∪ N). Each

node receives an activation from its neighbors which have the same distance or

one step closer to the initial node.

The main problem of node selection methods is their tendency towards low degree nodes.

Because, most of links of low degree nodes end inside the found community, they usually
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achieve better scores. Because of this problem, most of the local community detection al-

gorithms trap in local extremums. In other words, local criteria are unaware of the global

structure of networks, and are based on maximizing the number of indegree edges and min-

imizing the number of outdegree edges of a community. As a result, a high degree node

which mostly has more outdegree than indegree edges, is not added until most of its neigh-

bors are added to the found community. For instance, in Fig. 1, node i is the initial node,

and there are four candidate vertices ({X, Y, V,W}) that can be added to C. For example,

FIG. 1: Vertex i is the initial node. {X,V, Y,W}, are candidate nodes for expanding C.

Local Modularity (R) considers the difference between indegree and outdegree edges which

causes low degree nodes to be added to the community first. Outwardness also considers the

difference between indegree and outdegree edges, normalized by the degree of the node. In

this case, low degree nodes usually have a lower outwardness. Unlike the aforementioned

TABLE I: The competencies that each measure gives to candidate nodes.

X Y V W Selected node

4R 0.1 0.2 0.25 0.25 V or W

Outwardness 0.875 0.333 0 0 V or W

MaxActivation(δ = 0.5) 1 1 0.75 0.75 X or Y

measures, MaxActivation distinguishes outdegree edges based on their ending point. This

criterion scores edges that end into other candidate nodes (N), and ignores the links ending

into U . Hence, despite the superiority of node Y over node X, MaxActivation treats them

indifferently.

We divide local algorithms into two categories based on the node selection step. In the first
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category, candidate nodes are sorted by their competency, and added until a termination

criterion reaches a local extremum. The competency of each candidate node is computed

once, and adding a node to C does not affect the competency of other nodes. For exam-

ple, in the algorithm introduced by Andersen et al.10,18, competencies of candidate nodes

are specified by normalized random walk probabilities and computed once. Moreover, the

MaxActivation criterion can be computed once at the beginning, because the competency of

nodes only depend on the initial node. These algorithms which we call static methods, de-

crease the calculation complexity at the cost of decreased Precision. In the second category,

unlike static methods, the competency of candidate nodes depend on the nodes in the found

community, and should be updated after adding each node5,11. We call these algorithms

dynamic methods. Although, the complexity of these methods is higher than static meth-

ods, dynamic methods benefit from higher Precision. Moreover, because of the small size of

a community compared to the whole graph, this complexity is negligible, causing dynamic

algorithms to be more desirable than static ones.

B. Decision step

In each iteration, after selecting the most appropriate node, a termination criterion is

utilized to determine whether to add this node or not. A local criterion is usually used as a

termination criterion. The goal of local algorithms is to minimize(maximize) this criterion.

Unfortunately, in many cases, utilizing a local criterion causes a small set of nodes to be

bounded by a cut which is smaller than the cut of the objective community, leading local

algorithms to trap in a local minimum(maximum)19. Therefore, the found community is

smaller than the corresponding real community. For instance, in Fig.2, there is a cut of size

3 in C1 that is smaller than the cut size between C1 and C2 which is equal to 4. However,

nodes of {1, 2, 3} belong to C1.

C. Filtering step

As mentioned before, the main problem of local community detection algorithms is en-

trapping in local extremum points. To alleviate this problem, some of the methods tem-
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FIG. 2: There is a cut in C1 that is smaller than the cut between two communities of C1 and C2.

porarily add the high degree nodes to the found community, and run their algorithm until

the termination criterion is met. Then, they recheck the termination criterion and remove

the high degree nodes that might have degraded the performance of the algorithm.

III. PRELIMINARIES

In this paper, we use the lazy random walk to propagate initial probabilities assigned to

members of the found community C. Proportional to their degree, an initial probability is

assigned to nodes in C:

P0(i) =


deg(i)∑

i∈C deg(i)
if i ∈ C

0 otherwise
(4)

where deg(i) denotes the degree of node i. We apply a random walk with a limited number of

steps. The probability of being in each node after t steps, is defined by pt which is computed

as:

Pt = W tP0 (5)

where W is the transition matrix for the lazy random walk and is defined as:

W =
1

2
(I + AD−1) (6)

where A is an adjacency matrix, and D is a diagonal matrix in which Dii = deg(i). A

random walk is biased towards high degree nodes which may have high outdegree edges

compared to indegree edges. In order to remove this tendency, the probability of being at
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each node in (C ∪N) after t steps is normalized by its degree.

rt(v) =
pt(v)

deg(v)
(7)

IV. PROPOSED METHOD

In this section, we introduce a novel algorithm, called LCD-RW, that can escape from

local extremums. This algorithm consists of three main steps. In the following, we explain

each step in detail.

A. Node selection step

As mentioned before, to select the most appropriate node, the criterion used in the node

selection step must weight the edge types properly, and discern between outdegree edges that

end into N and U . The proposed algorithm applies the normalized probability distribution

related to the lazy random walk. In that sense, a truncated random walk is utilized to

distribute the probability(P0), allocated to the nodes in the found community. Because

of the modular structure in most complex networks, lazy random walk hardly exits from

a community20. In other words, sparse connection between communities prevents a lazy

random walk from rapidly leaving a community. Therefore, the probability of remaining in

the community of the initial node, after a limited number of steps, is more than being in a

node outside that community. Assume that the average ratio of outdegree to indegree edges

for the nodes of a community is µ(= koutv

kinv
), and the probability of remaining in a node is p.

Therefore, a lazy random walk goes to another node by a probability equal to (1−p). Thus,

the probability of leaving a node and going to another node in a different community in one

step would be:

pout = (1− p) koutv

koutv + kinv
= (1− p) µ

µ+ 1
(8)

Therefore, the probability of leaving a community at step t for the first time is:

Pout(t) = (1− pout)(t−1)pout (9)

By increasing the number of steps, the probability of being in each node converges to a fix

value that is proportional to the degree of the node. Therefore, we apply a limited number

of steps to calculate the competency of each candidate node. The proposed method for
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selecting an appropriate node is depicted in Algorithm 1.

ALGORITHM 1: Selecting the best node for adding to the community

SelectNextNode (G(V,E), C, t)

{

ExploredNodes←− BFS(G,C, t)

CandidateNodes←− Neighboars of C

%P is a probability vector

Foreach v ∈ C ∪ ExploredNodes do

if v ∈ C then

P0(v) = deg(v)∑
n∈C deg(n)

else

P0(v) = 0

end if

end for

compute Pt

nexNode←− node(x) with highest value

of Pt(x)
deg(x) in CandidateNodes

Return nextNode

}

FIG. 3: The initial probabilities(P0) are assigned to the members of the found community, C,

proportional to their degree. P1 and P2 show the probability of each node for step = 1 and 2. Dashed

arrows indicate the possible path for a random walk for each step.

In this pseudo code, the input parameter, t, determines the number of steps for a random
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TABLE II: The conditions which must be fulfilled to add a candidate node(s) to C in Fig. 4.

C ′ = C ∪ {1} C ∪ {2} C ∪ {1, 2}

φ(C ′) = y+1
(y+1)+2(x+2)

y+1
(y+1)+2(x+1)

y
y+2(x+4)

φ(C ′) < φ(C) if x < 2y x < y
√

walk. The minimum number of steps in which outdegree edges of candidate nodes(N) that

end into nodes in N participate in probability distribution is equal to 2, since in the first

step the candidate nodes receive a non zero probability, and in the next step they can

distribute this probability to their neighbors. As shown in Fig. 3, the edge (6,4) participate

in probability distribution for steps ≥ 2. Moreover, a high number of steps causes the

probability of being in each node to converge to a fix value, and more nodes are needed to

be explored. Therefore, a small value bigger than one, is suitable for this parameter.

FIG. 4: C is the found community for an initial node. Nodes 1 and 2 are candidate for addition to C.

Dashed lines show indegree edges of candidate nodes.

B. Descision step

As mentioned before, one of the main problems in local algorithms is entrapping in local

extremums. The main reason for this problem is that local algorithms tend to add low degree

nodes, and edges of low degree nodes usually end into the found community. Hence, adding

these nodes causes the total number of indegree edges of the found community to increase,

while the total number of outdegree edges decreases. Therefore, their competency are more
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than high degree nodes. On the other hand, high degree candidate nodes which generally

have more outdegree edges than indegree ones are not added, while most of their outdegree

edges end into other candidate nodes, and by adding a group of high degree nodes, the total

number of outdegree links of the found community is considerably decreased. For example,

in Fig. 4 nodes 1 and 2 are two candidate nodes to be added to C. Suppose conductance

is used as the termination criterion. The most appropriate node (according to any node

selection criteria) will be added to C if it decreases the conductance of C, otherwise C will

be returned. Assume that C contains x indegree edges, and y(y = 3) oudegree edges, then

its conductance is φ = y
2x+y

. The changes in conductance of C by adding candidate node(s)

is shown in TABLE II. As described in this table, neither of these two candidate nodes

can be added to C unless they satisfy some conditions (for instance, the number of indegree

edges of C should be less than its external edges). Moreover, by adding both nodes, {1, 2},

the conductance of C reduces.

To overcome this problem in the proposed method (LCD-RW), we add a group of vertices

which causes the probability of entrapping in local extremums to decrease, and the tendency

of selecting low degree nodes become insignificant. The proposed algorithm creates a tem-

porary community, and nodes are added to this community until the algorithm can not find

a node that improves the termination criterion (conductance). Then, we decide whether to

join the temporary set to the initial found set (found community) or not. This temporary

set would be added to the found community if it decreases the conductance of the found

community. If joining occurs, then LCD-RW continues, and a new temporary set is created,

otherwise it stops.

C. Filtering step

By adding a group of nodes instead of a single node, we decrease the probability of

falling into local extremums. However, adding a group of nodes to C usually causes the

neighbor communities to merge. Assume C and Ctemp are two neighbor communities. Also

consider x, y as the number of indegree and outdegree edges of C, and x′, y′ as the number

of indegree and outdegree edges of Ctemp, respectively. We assume the number of common

links between C and Ctemp as two neighboring communities is k(k ≥ 1). By merging these

two groups, the conductance of the new group is:
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FIG. 5: Dendrogram of the hierarchical structure of a graph. At the bottom of the dendrogram, each

node is a separate module and by moving upwards, modules are aggregated and larger ones are created.

φ(C1 ∪ C2) =
y + y′ − 2k

y + y′ − 2k + 2(x+ x′ + k)
(10)

The new group will have a lower conductance if the condition described in equation 11 is

fulfilled:

y + y′ − 2k

y + y′ − 2k + 2(x+ x′ + k)
<

y

y + 2x
⇒ (11)

(2x+ y)(y + y′ − 2k) < y(y + y′) + 2y(x+ x′)⇒

2x(y + y′ − 2k) + y(y + y′)− 2ky < y(y + y′) + 2y(x+ x′)⇒

x(y + y′ − 2k)− ky < y(x+ x′)⇒

−k(2x+ y) < y(x+ x′)− x(y + y′)⇒

k >
x(y + y′)− y(x+ x′)

2x+ y
⇒

k >
xy′ − yx′

2x+ y

Note that x, y, x′, andy′ > 0, hence we can conclude that:

xy′ − yx′

2x+ y
<
y′

2
(12)

From equations 11 and 12, we can show that if the majority of outdegree edges of Ctemp end in

nodes of C, (k > y′

2
), C, and Ctemp are merged. Merging some neighbor communities results

in a bigger community which has a lower number of outdegree edges compared to the total

outdegree of the composing communities. The reason is that merging adjacent communities

converts a number of outdegree edges into indegree edges. Therefore, in most networks there

is a hierarchical structure between communities that can be represented by a dendrogram as

shown in Fig.5. Based on this representation, divisive and aggregative global algorithms have
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been emerged. The divisive top-down algorithms try to separate communities by removing

edges that connect them to each other. On the other hand, the bottom-up aggregative

global algorithms, merge communities to obtain the final community. In these algorithms,

initially each node is considered as a separate community and these communities are merged

to improve a global criterion. In both divisive and aggregative algorithms, after constructing

the dendrogram of a graph, communities are detected by horizontally cutting through the

dendrogram. Cutting the dendrogram at a higher level results in low conductance groups

such that each group contains one or more communities, and has its own dendrogram, while

cutting the dendrogram at a low level results in more communities with high conductance.

As described before, the tendency of LCD-RW to merge neighbor communities leads this

algorithm to return a low conductance group which is a union of neighboring communities.

These communities construct a dendrogram that is obtained by a cut on the dendrogram of

the graph. Thus, the found communities by LCD-RW can be considered as an independent

sub-graph that has limited links to the rest of graph. Hence, we can apply a divisive or

aggregative global algorithm in the filtering step to extract the real community of the initial

node. In other words, these two category of global algorithms return more remarkable

communities in the sub-graph of the found community by LCD-RW.

Since the complexity of global algorithms depends on the size of the graph, we apply a

threshold on the size of the community found by LCD-RW. A large threshold forces the

found community to contain more sub-communities that requires more time to find the real

community due to using a global algorithm, and a small threshold causes LCD-RW to fall

in a local minimum. Observation on many social networks shows that the maximum size

for human communities in social networks, known as the Dunbar number, is less than 150

members21. Moreover, online-communities have less than 60 members22. Hence, for most of

networks, 150 is a reasonable value for the threshold.

The Algorithm 2 describes the proposed LCD-RW algorithm. The global algorithm used

in the filtering step is CNM7. This algorithm is a greedy algorithm which constructs a

hierarchical tree of communities by joining communities to optimize the modularity in each

step. Moreover, the complexity of CNM is low. LCD-RW is a dynamic method, because

after a node is added to the temporary found community, the competency of candidate nodes

are recomputed.
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ALGORITHM 2: LCD-RW Algorithm

LCD-RW (G(V,E), v, threshold)

{

C ←− v0

while (true) do

S ←− v0

%S is a temporary community

while (a local minimumfor φ is not found) do

nextNode = SelectNextNode(G,S, step)

S ←− (S ∪ nextNode)

end while

if φ(C ∪ S) < φ(C) and |C ∪ S| < threshold then

C ←− C ∪ S

v0 = SelectNextNode(G,S, step)

S ←− ∅

else

%LCD −RW stops adding nodes to C

break;

end if

end while

Cfinal ←− CNM(G(C))

}

V. EVALUATION MEASURES

In general, two prevalent approaches are utilized to evaluate and compare the performance

of local community detection algorithms. The first approach is used when the size of network

is small enough to find all the communities by a global community detection algorithm. In

such a scenario, we can compare the found community for a given node with the real one

which is found by a well-known global community detection algorithm. In this case, we

may use Precision and Recall for evaluation purposes. Precision represents the purity of the
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found community, and Recall evaluates the fraction of nodes in the real community of the

initial node that are detected by a global algorithm. Moreover, we can use the F-measure

which is defined as:

Precision =
|Cf

⋂
Cr|

|Cf |
(13)

Recall =
|Cf

⋂
Cr|

|Cr|

F −measure =
2×Recall × Precision
Precision+Recall

Where, Cr is the real community of the given node detected by a global algorithm, and

Cf is the found community by the local algorithm. Many complex networks such as social

TABLE III: The characteristics of algorithms used for comparison with the proposed method

Name
Node Selection

Criterion
Termination Criterion

Type of

Algorithm

MaxActivation MaxActivation φ static

Bagrow11 Outwardness R dynamic

Clauset5 R R dynamic

LCD-RW(proposed

algorithm)
Random Walk φ dynamic

networks are large scale, and we can not obtain their communities by global community de-

tection algorithms. Hence, an alternative evaluation approach is introduced that is based on

the features (such as conductance) of the found communities. In this approach, we cannot

judge the goodness of an algorithm by applying these measures, and only features of the

found communities can be compared with each other.

As discussed before, defining a proper termination criterion is a critical issue in local al-

gorithms, and optimizing a local criterion does not guarantee the optimization of a global

criterion. In summary, using a local criterion for termination causes local algorithms to

return a set of nodes that might be considerably different from the community obtained by

the global algorithms23. In this paper, we use both approaches to evaluate the results.
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TABLE IV: The characteristics of real-word networks. ] Node, ] Edge, ] Community and Avg(φ) are

number of nodes, number of edges, number of communities in each network, and average conductance of

communities, respectively.

Name ] Node ] Edge ] Community Avg(φ)

US Airline 332 2126 8 0.356

Football 115 613 11 0.316

Jazz 198 2742 13 0.558

Net Science 1589 2742 196 0.0354

Protein 95 213 6 0.08

Roget 1022 3648 34 0.472

VI. RESULTS

In this section, we evaluate the proposed algorithm on real network datasets and artificial

graphs. According to the first evaluation approach, we should extract all communities in a

network and compare the found community for the given node with the real one. We applied

the OSLOM algorithm1 to detect communities. The proposed algorithm was compared with

algorithms presented in table III. We describe local algorithms by the criterion used in each

step and the algorithm type (static or dynamic).

We applied our algorithm on different real networks. The biological network used in our

simulations was Protein24. Football25, Jazz26 and Net Science27 networks are social networks

that were used to evaluate our method. In addition, we used US Airline28 as a technolog-

ical network and Roget as an information network28. For non-social networks, we used a

threshold that was bigger than the size of networks. The characteristics of these datasets

are shown in TABLE IV. In general, a lower average value of φ for a graph shows that it

has a strong community structure.

In order to construct benchmark graphs we used the LFR29,30 method. In this method,

graphs with various community structures can be generated. This method takes two input

parameters; first the number of nodes in the graph, and second a parameter named µ. This

parameter indicates the ratio of the number of outdegree edges to the number of indegree

edges of nodes. In other words, it specifies the strength of the community structure in a
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graph. Graphs with smaller values of µ have stronger community structures. In our simula-

tions, we created graphs with one thousand nodes and different µs ({0.1, 0.15, 0.2, · · · , 0.5}).

For datasets with more than 300 nodes, we randomly sampled with a rate of 0.1 for selecting

the initial nodes and executed the algorithms on those nodes.

As described, since a higher value for step does not considerably increase the Precision of

the algorithm, and boost the number of candidate nodes significantly, we set its value to 3

in our simulations.

A. Precision, Recall and F-Measure

Experimental results for real-world networks are represented in Fig. 6a, 7a and 8a. As

shown in these figures, in general LCD-RW has more Recall and F-measure compared to

the other algorithms. MaxActivation, Clauset and Bagrow fall in a local optimum and can

not return all nodes of the goal community which causes their Recall to be low. Moreover,

MaxActivation utilizes a criterion that tends to add high degree nodes to a community which

have more indegree edges compared to other candidate nodes. However, these nodes have

high outdegree edges. As a result, this algorithm can not determine nodes which are in the

goal community and its Recall and Precision are both low.

The average conductance of communities is a measure that represents the strongness of a

community structure in a network. Communities with a high conductance, possess more

outdegree edges and detecting the nodes belonging to the goal community becomes diffi-

cult. Simulation results showed that none of the algorithms work well on US Airline, Jazz

and Roget datasets because of the high average conductance of the communities in these

networks.

Because of entrapping in local extremums, the previous algorithms have higher Precisions

at the cost of lower Recalls. The high Precision of these algorithms is caused by choosing a

small group of nodes that are close to the initial one. For example, in the Protein dataset,

Clauset, MaxActivation and Bagrow methods achieve a Precision close to one, but their

Recall is lower than 0.5. The average size of communities in this network is (95/6 ' 16) and

the average node degree is 213×2
95
' 6, while the average size of the found communities by

these algorithms is 8. Therefore, they return a limited number of nodes as the community

members of the initial node. For instance, in the Protein dataset of Fig. 9, if an initial
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FIG. 6: Precision of algorithms for real world and LFR datasets.

node is selected from any community except C1, most local algorithms will detect the

community of the initial node with high Precision and Recall due to strong connections

between the neighboring nodes. However, if the initial node is selected form C1, the low

density of edges in this community causes the previous local community detection algorithms

to trap in a local extremum. For example, if we give vertex 9 from C1 as an initial node to

three algorithms which use local modularity, Outwardness and MaxActivation as their node

selection criterion. Also, we give this node to LCD-RW which adds a group of nodes as a

batch to the found set of C, whereas other algorithms add a single node in each iteration.

We also set conductance as a termination criterion for all algorithms.

Changes in conductance as a termination criterion in the decision step is shown in Fig.10.

Also Fig. 11 and Fig. 12 illustrate Precision and Recall of different algorithms respectively.

As shown in Fig. 10, the conductance diagram contains some local minimums. LCD-RW

falls in a local minimum after other algorithms. Thus, as shown in Fig. 12, the Recall

resulted from entrapping in a local minimum for the community found by LCD-RW is more
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FIG. 7: Recall of algorithms for real world and LFR datasets.

than the Recall obtained by other algorithms while all algorithms have the highest possible

Precision as shown in Fig. 11.

B. Conductance

To evaluate the community structure of the found communities, we utilized conductance.

As Fig. 13 shows, the average conductance of the communities found by the previous

algorithms are worse than communities returned by LCD-RW. The reason is that previous

algorithms trap in a local extremum and cannot add all members of the goal community.

Therefore, their small set of community nodes are often bounded by a cut which is bigger

than the cut of the goal community. While, our algorithm can scape from local extremums

and explore the major members of the goal community. Hence, the cut set of the communities
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FIG. 8: F-measure of algorithms for real world and LFR datasets.

FIG. 9: Protein dataset31. This network has 6 communities. Nodes of 76 and 52 belong to both C5 and

C4.
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points that each criterion falls in its first local minimum are marked.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Size

Pr
ec

isi
on

 

 
Local Modularity
Outwardness
MaxActivation
LCD−RW

Precions that
resulted from each
algortims when they struck in their
first local minimum

FIG. 11: Precision changes corresponding to addition of nodes by each node selection criteria. The

obtained Precisions when each criterion falls in its first local minimum of its conductance are marked.
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FIG. 13: Conductance of algorithms for real world and LFR datasets.

found by the proposed algorithm is smaller, and hence its found communities have a more

acceptable structure. The MaxActivation criterion tends towards high degree nodes, and as

a result, the number of outdegree edges of communities found by it, is high and it traps in a

local minimum(maximum) sooner than other algorithms. In the LFR graphs, similar results

are observed. Moreover, increasing µ causes the community structure to become weak and

the performance of the algorithms to degrade. Moreover, as Fig. 13b shows, the tendency

of MaxActivation towards high degree nodes leads the conductance of its found community

to increase more than other algorithms as µ increases.

C. Number of steps

To evaluate the the impact of the number of steps on Precision, Recall and F-measure,

we applied our algorithms on the Protein dataset for different number of steps. As shown in

Fig.14, increasing this parameter does not considerably impact the Precision. Furthermore,

Recall is not significantly influenced by the number of steps. Therefore, the F-measure
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FIG. 14: The impact of the number of steps on Precision and Recall for the Protein dataset.

changes are also negligible. Since, the high values for number of steps forces our algorithm

to explore a large part of the graph, we used a small value for the number of steps in our

simulations so that the Precision is not considerably decreased.

VII. CONCLUSION

One of the most important characteristics of complex networks is their community struc-

ture. In general, links do not appear randomly in these networks, and they have a modular

structure where each module is called a community. Many algorithms have been proposed

to find communities in such networks. However, their complexity is high and in most large

scale networks, the whole network structure is inaccessible. Hence, local community detec-

tion algorithms were introduced. One of the most important problems of local algorithms

is entrapment in local extremums.

In this paper, we proposed a new local community detection algorithm (LCD-RW) that can

escape from local extremums by adding a group of nodes instead of a single node, in the

node selection step. The results showed that our algorithm returns a low conductance group

of nodes that contains most of the nodes in the community of the initial node. In order to

identify the goal community and improve the accuracy of our algorithm, in the filtering step,

we applied a global community detection algorithm on the found community which has a

few links to rest of networks and can be considered as a small independent graph. We ap-

plied the proposed method to real and artificial networks and compared it with well-known

and recent local community detection algorithms. Simulations indicate that the proposed

algorithm has higher F-measures and efficiently finds the well-structured communities.
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